IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [246990]
The skeleton of postmetamorphic echinoderms in a changing world
Dubois, P. (2014). The skeleton of postmetamorphic echinoderms in a changing world. Biol. Bull. 226(3): 223-236
In: The Biological Bulletin. Marine Biological Laboratory: Lancaster. ISSN 0006-3185; e-ISSN 1939-8697, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 

Abstract
    Available evidence on the impact of acidification and its interaction with warming on the skeleton of postmetamorphic (juvenile and adult) echinoderms is reviewed. Data are available on sea urchins, starfish, and brittle stars in 33 studies. Skeleton growth of juveniles of all sea urchin species studied so far is affected from pH 7.8 to 7.6 in seawater, values that are expected to be reached during the 21st century. Growth in adult sea urchins (six species studied) is apparently only marginally affected at seawater pH relevant to this century. The interacting effect of temperature differed according to studies. Juvenile starfish as well as adults seem to be either not impacted or even boosted by acidification. Brittle stars show moderate effects at pH below or equal to 7.4. Dissolution of the body wall skeleton is unlikely to be a major threat to sea urchins. Spines, however, due to their exposed position, are more prone to this threat, but their regeneration abilities can probably ensure their maintenance, although this could have an energetic cost and induce changes in resource allocation. No information is available on skeleton dissolution in starfish, and the situation in brittle stars needs further assessment. Very preliminary evidence indicates that mechanical properties in sea urchins could be affected. So, although the impact of ocean acidification on the skeleton of echinoderms has been considered as a major threat from the first studies, we need a better understanding of the induced changes, in particular the functional consequences of growth modifications and dissolution related to mechanical properties. It is suggested to focus studies on these aspects.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author