IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [302493]
Remote sensing of water constituent concentrations using time series of in-situ hyperspectral measurements in the Wadden Sea
Arabi, B.; Salama, M.S.; Wernand, M.R.; Verhoef, W. (2018). Remote sensing of water constituent concentrations using time series of in-situ hyperspectral measurements in the Wadden Sea. Remote Sens. Environ. 216: 154-170. https://doi.org/10.1016/j.rse.2018.06.040
In: Remote Sensing of Environment. Elsevier: New York,. ISSN 0034-4257; e-ISSN 1879-0704, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Remote sensing; Turbid waters; The 2SeaColor model; Hyperspectral measurements; Tidal effect; Solar zenith angle; The NIOZ jetty station; The Wadden Sea

Authors  Top 
  • Arabi, B.
  • Salama, M.S.
  • Wernand, M.R., more
  • Verhoef, W.

Abstract
    This study aimed to investigate the capability of the two-stream radiative transfer model 2SeaColor for the simultaneous retrieval of Chlorophyll-a (Chla), Suspended Particulate Matter (SPM) and Colored Dissolved Organic Matter (CDOM) concentrations from remote sensing measurements under various conditions (i.e., solar zenith angle values (SZAs) and water turbidity levels). For this evaluation, a time series of diurnal in-situ hyperspectral measurements of remote sensing reflectance (Rrs) concurrent with in-situ measured Chla and SPM concentrations between 2008 and 2010 by the NIOZ jetty station (the NJS), located in the Dutch part of the Wadden Sea, was used. Validation of the model retrievals against in-situ measurements showed an acceptable accuracy (Chla: R2= 0.80 and RMSE = 2.98 [mg m−3]; SPM: R2= 0.89 and RMSE = 2.53 [g m−3]) with good agreement between the temporal trends of measured and retrieved concentration values over multiple years. However, the model inversion results yielded less good estimates at SZA > 60° during winter. Furthermore, the effect of the tide on the variation of daily time series of Chla and SPM concentrations was analyzed. At the particular NJS location, the tidal effects on the concentrations of SPM and Chla were found to be small. The capability of the 2SeaColor model to retrieve reliable estimates, and the favorable location of the NJS, which is little influenced by tidal phase variations, contribute to a better understanding of the long-term variability of Chla and SPM concentrations. The results of this study may support the ongoing efforts on Sentinel-3 Ocean and Land Color Instrument (OLCI) calibration and validation at the Dutch Wadden Sea.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors