IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [303627]
Structure of the deep spillway in the western part of the Romanche fracture zone
Tarakanov, R.Y.; Morozov, E.G.; van Haren, H.; Makarenko, N.I.; Demidova, T.A. (2018). Structure of the deep spillway in the western part of the Romanche fracture zone. JGR: Oceans 123(11): 8508-8531. https://doi.org/10.1029/2018jc013961

Additional data:
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Tarakanov, R.Y.
  • Morozov, E.G.
  • van Haren, H., more
  • Makarenko, N.I.
  • Demidova, T.A.

Abstract
    Structure of the deep spillway was studied on the basis of conductivity‐temperature‐depth, lowered acoustic Doppler current profiler, and mooring measurements in 2011–2014 in the Romanche fracture zone (22°27′–22°32′W). The spillway exists quasi‐permanently in the regime of hydraulic control overflow and consists of two flows in the layer θ < 1.20 °C (deeper than 4,150 m). The first flow enters the fracture from the south through a gap in the Southern Wall. The second flow is directed to the east along the narrow valley of the fracture. The sill depths of these passages are 4,570 and 4,430 m, respectively. The depths over the surrounding ridges are shallower than 4,100 m. Both flows descend to the local depression of the fracture with 5,000‐m depth. Bottom potential temperatures over both sills were 0.51 °C, and the measured velocities were 20–40 cm/s. When the flows descend down the slope, they accelerate in supercritical regime. Maximal measured velocities were up to 65 cm/s. Analysis of the 189‐day time series of velocities on the mooring deployed in the flow descending from the gap showed a very high level of fluctuation energy: 10 times greater than the energy of the barotropic tide at this point. The only energy source of these fluctuations is the available potential energy of the deep thermocline in the West Atlantic transforming to the kinetic energy of the deep spillway. The total transport of the bottom water below θ = 1.2 °C based on the lowered acoustic Doppler current profiler measurements is estimated at 0.29–0.35 Sv, which agrees with the predicted values.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors