IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [307953]
Zebrafish-based discovery of antiseizure compounds from the Red Sea: pseurotin A2 and Azaspirofuran A
Copmans, D.; Rateb, M.; Tabudravu, J.N.; Perez-Bonilla, M.; Dirkx, N.; Vallorani, R.; Diaz, C.; del Palacio, J.P.; Smith, A.J.; Ebel, R.; Reyes, F.; Jaspars, M.; de Witte, P.A.M. (2018). Zebrafish-based discovery of antiseizure compounds from the Red Sea: pseurotin A2 and Azaspirofuran A. ACS Chemical Neuroscience 9(7): 1652-1662. https://dx.doi.org/10.1021/acschemneuro.8b00060
In: ACS Chemical Neuroscience. AMER CHEMICAL SOC: Washington. ISSN 1948-7193, more
Peer reviewed article  

Available in  Authors 

Keywords
    Aspergillus fumigatus Fresen., 1863 [WoRMS]
    Marine/Coastal
Author keywords
    Epilepsy; antiseizure drug discovery; marine drug discovery; pseurotinA(2); azaspirofuran A; Aspergillus fumigatus

Authors  Top 
  • Copmans, D., more
  • Rateb, M.
  • Tabudravu, J.N.
  • Perez-Bonilla, M.
  • Dirkx, N., more
  • Vallorani, R., more
  • Diaz, C.
  • del Palacio, J.P.
  • Smith, A.J.
  • Ebel, R.
  • Reyes, F.
  • Jaspars, M.
  • de Witte, P.A.M., more

Abstract
    In search for novel antiseizure drugs (ASDs), the European FP7-funded PharmaSea project used zebrafish embryos and larvae as a drug discovery platform to screen marine natural products to identify promising antiseizure hits in vivo for further development. Within the framework of this project, seven known heterospirocyclic γ-lactams, namely, pseurotin A, pseurotin A2, pseurotin F1, 11-O-methylpseurotin A, pseurotin D, azaspirofuran A, and azaspirofuran B, were isolated from the bioactive marine fungus Aspergillus fumigatus, and their antiseizure activity was evaluated in the larval zebrafish pentylenetetrazole (PTZ) seizure model. Pseurotin A2 and azaspirofuran A were identified as antiseizure hits, while their close chemical analogues were inactive. Besides, electrophysiological analysis from the zebrafish midbrain demonstrated that pseurotin A2 and azaspirofuran A also ameliorate PTZ-induced epileptiform discharges. Next, to determine whether these findings translate to mammalians, both compounds were analyzed in the mouse 6 Hz (44 mA) psychomotor seizure model. They lowered the seizure duration dose-dependently, thereby confirming their antiseizure properties and suggesting activity against drug-resistant seizures. Finally, in a thorough ADMET assessment, pseurotin A2 and azaspirofuran A were found to be drug-like. Based on the prominent antiseizure activity in both species and the drug-likeness, we propose pseurotin A2 and azaspirofuran A as lead compounds that are worth further investigation for the treatment of epileptic seizures. This study not only provides the first evidence of antiseizure activity of pseurotins and azaspirofurans, but also demonstrates the value of the zebrafish model in (marine) natural product drug discovery in general, and for ASD discovery in particular.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors