IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [309913]
Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa
Maier, S.R.; Kutti, T.; Bannister, R.J.; van Breugel, P.; van Rijswijk, P.; van Oevelen, D. (2019). Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64(4): 1651-1671. https://dx.doi.org/10.1002/lno.11142

Additional data:
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Maier, S.R., more
  • Kutti, T.
  • Bannister, R.J.
  • van Breugel, P., more
  • van Rijswijk, P., more
  • van Oevelen, D., more

Abstract
    Cold‐water coral (CWC) reefs are hotspots of biodiversity and productivity in the deep sea, but their distribution is limited by the availability of food, which undergoes complex local and temporal variability. We studied the resource utilization, metabolism, and tissue storage of CWC Lophelia pertusa during an experimentally simulated 3‐day food pulse, of 13C5N‐enriched phytodetritus, followed by a 4‐week food deprivation. Oxygen consumption (0.145 μmol O2 [mmol organic carbon {OC}]−1 h−1), release of particulate organic matter (0.029 μmol particulate organic carbon [POC] [mmol OC]−1 h−1 and 0.005 μmol particulate organic nitrogen [mmol OC]−1 h−1), ammonium excretion (0.004 μmol NH4+ [mmol OC]−1 h−1), tissue C and N content, and fatty acid (FA) and amino acid composition did not change significantly during the experiment. Metabolization of the labeled phytodetritus, however, underwent distinct temporal dynamics. Initially, L. pertusa preferentially used phytodetritus‐derived C for respiration (2.2 ± 0.36 nmol C [mmol  OC]−1 h−1) and mucus production (0.94 ± 0.52 nmol C [mmol  OC]−1 h−1), but those tracer fluxes declined exponentially to <20% within 2 weeks after feeding and then remained stable, indicating that the remainder of the incorporated phytodetritus had entered a tissue pool with lower turnover. Analysis of 13C in individual FAs revealed a mismatch between the FAs incorporated from phytodetritus and the FA requirements of the coral. We suggest that feeding on other resources, such as lipid‐rich zooplankton, could fill this deficiency. A release of 10% of their total OC as respired C and POC during the 4‐week food deprivation underlines the importance of regular food pulses for CWC reefs.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors