IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [323729]
Planktonic primary production in the western Dutch Wadden Sea
Jacobs, P.; Kromkamp, J.C.; van Leeuwen, S.; Philippart, C.J.M. (2020). Planktonic primary production in the western Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 639: 53-71. https://dx.doi.org/10.3354/meps13267

Additional data:
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Production-light curve; Photosynthetic parameters; Environmental variables; 14C incubations; Phytoplankton

Authors  Top 
  • Jacobs, P., more
  • Kromkamp, J.C.
  • van Leeuwen, S., more
  • Philippart, C.J.M., more

Abstract
    Pelagic primary production measurements provide fundamental information about the trophic status of a marine ecosystem. Measured carbon fixation rates generally have a limited temporal and spatial resolution, but can be combined with Earth Observation data to extrapolate the measurements. Here, P-E curves were fitted for 3 yr of 14C incubation data from the western Wadden Sea, using 4 different models; 2 with and 2 without photo-inhibition. The curve-fit model by Jassby & Platt (1976) best fit the data. Applying this model showed that the photosynthetic parameters, normalised for chlorophyll a concentration, of maximum production (PBmax) and initial slope of the P-E curve (αB) were correlated. Seasonality in photosynthetic parameters of this model and the relationship with environmental variables were explored, with a focus on variables that can be inferred from satellite algorithms. There were no significant correlations between αB and any of the environmental variables measured. While PBmax correlated with sea surface temperature (SST), the vertical light attenuation coefficient, silicate and nitrate + nitrite concentration, the multivariate model that best explained the variation in estimates of PBmax was a model that included SST and year. In the period from 2012-2014, daily and annual production ranged between 3.4 and 3800 mg C d-1-2 yr-1, respectively. Comparison of these results with historical data (1990-2003) indicates that the decline in planktonic primary production that has been happening since the 1990s has halted. Although not tested, we believe that our approach is generally applicable to coastal waters.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors