IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [332365]
Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids
Lee, G.; Kim, S.; Bastiaensen, M.; Malarvannan, G.; Poma, G.; Caballero Casero, N.; Gys, C.; Covaci, A.; Lee, S.; Lim, J.-E.; Mok, S.; Moon, H.-B.; Choi, G.; Choi, K. (2020). Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids. Environ. Res. 189: 109874. https://dx.doi.org/10.1016/j.envres.2020.109874
In: Environmental Research. Elsevier: Amsterdam. ISSN 0013-9351; e-ISSN 1096-0953, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Organophosphate esters, Alternative plasticizers, Phthalates, Fibroids, Pre-menopausal women

Authors  Top 
  • Lee, G.
  • Kim, S.
  • Bastiaensen, M., more
  • Malarvannan, G., more
  • Poma, G., more
  • Caballero Casero, N., more
  • Gys, C., more
  • Covaci, A., more
  • Lee, S.
  • Lim, J.-E.
  • Mok, S.
  • Moon, H.-B.
  • Choi, G.
  • Choi, K.

Abstract
    Exposure to endocrine disrupting chemicals is suggested to be responsible for the development or progression of uterine fibroids. However, little is known about risks related to emerging chemicals, such as organophosphate esters (OPEs) and alternative plasticizers (APs). A case-control study was conducted to investigate whether exposures to OPEs, APs, and phthalates, were associated with uterine fibroids in women of reproductive age. For this purpose, the cases (n = 32) and the matching controls (n = 79) were chosen based on the results of gynecologic ultrasonography among premenopausal adult women in Korea and measured for metabolites of several OPEs, APs, and major phthalates. Logistic regression models were employed to assess the associations between chemical exposure and disease status. Factor analysis was conducted for multiple chemical exposure assessments as a secondary analysis. Among OPE metabolites, diphenyl phosphate (DPHP), 2-ethylhexyl phenyl phosphate (EHPHP), and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) were detected in >80% of the subjects. Among APs, metabolites of di-isononyl phthalate (DINP) and di(2-propylheptyl) phthalate (DPrHpP) were detected in >75% of the urine samples. The odds ratios (ORs) of uterine fibroids were significantly higher among the women with higher exposures to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-butoxyethyl) phosphate (TBOEP), di(2-ethylhexyl) terephthalate (DEHTP), DPrHpP, and di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate (DINCH). In addition, urinary concentrations of mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), a sum of five di(2-ethylhexyl) phthalate metabolites (∑5DEHP), and mono(4-methyl-7-hydroxyoctyl) phthalate (OH-MINP) were significantly higher in the cases. In factor analysis, a factor heavily loaded with DPrHpP and DEHP was significantly associated with uterine fibroids, supporting the observation from the single chemical regression model. We found for the first time that several metabolites of OPEs and APs are associated with increased risks of uterine fibroids among pre-menopausal women. Further epidemiological and mechanistic studies are warranted to validate the associations observed in the present study.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors