IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [33250]
Bioavailability of waterborne strontium to the common carp, Cyprinus carpio, in complexing environments
Chowdhury, M.J.; Blust, R. (2002). Bioavailability of waterborne strontium to the common carp, Cyprinus carpio, in complexing environments. Aquat. Toxicol. 58(3-4): 215-227. dx.doi.org/10.1016/S0166-445X(01)00230-2
In: Aquatic Toxicology. Elsevier Science: Tokyo; New York; London; Amsterdam. ISSN 0166-445X; e-ISSN 1879-1514, more
Peer reviewed article  

Available in  Authors 

Keywords
    Carp
    Chelating agents > Anticoagulants > Edta
    Chemical elements > Metals > Alkaline earth metals > Calcium
    Chemical elements > Metals > Alkaline earth metals > Strontium
    EDTA
    Fishes > Osteichthyes > Cypriniformes > Cyprinidae > Cyprinus > Freshwater fishes > Carp
    NTA
    Cyprinus carpio Linnaeus, 1758 [WoRMS]; Cyprinus carpio Linnaeus, 1758 [WoRMS]
Author keywords
    strontium; calcium; bioavailability; EDTA; NTA; carp

Authors  Top 

Abstract
    The uptake of strontium (Sr) and calcium (Ca) in the common carp, Cyprinus carpio, was studied in chemically defined freshwater in the presence of the complexing ligands, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid (NTA). The uptake rates were measured in the whole body, gills, and blood of the fish after an exposure period of 3 h. The uptake rates were determined by using the radiotracers 85Sr and 45Ca, and analyzed as a function of the free-ion activity of Sr and Ca in water. Although Sr2+ activity decreased, the uptake of Sr showed an increase at relatively low concentrations of EDTA and NTA, and a decrease at relatively high concentrations. This can be explained by the decreased competition between Sr2+ and Ca2+ at the gill uptake sites due to ~30–140-fold higher affinity of EDTA and NTA for Ca2+ than Sr2+. With decreasing Ca2+ activity, Ca uptake rates decreased in the presence of EDTA and NTA, but the effect of NTA was less pronounced. A Michaelis–Menten type competitive inhibition model was derived that could predict the whole-body Sr and Ca uptake rates, taking into account the ambient Sr2+ and Ca2+ activities in the presence of EDTA. In case of NTA, the uptake rates were found to be 1.5–3.2 times higher than what was predicted by the model. When the fish were exposed to complexing environments in the complete absence of Ca, an increased uptake of Sr was still observed in case of NTA, but not EDTA. The increased uptake in the presence of NTA is attributed to the direct uptake of SrNTA- and CaNTA- complexes from water. The results reveal that the uptake of Sr and Ca in carp is not merely a function of the free metal-ion activity but that certain complex species may contribute significantly to overall uptake.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors