IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [382871]
Bioactivity of fucoidan-rich extracts from Fucus vesiculosus against rotavirus and foodborne pathogens
Graikini, D.; Soro, A.B.; Sivagnanam, S.P.; Tiwari, B.K.; Sanchez, L. (2023). Bioactivity of fucoidan-rich extracts from Fucus vesiculosus against rotavirus and foodborne pathogens. Mar. Drugs 21(9): 478. https://dx.doi.org/10.3390/md21090478
In: Marine Drugs. Molecular Diversity Preservation International (MDPI): Basel. ISSN 1660-3397; e-ISSN 1660-3397, more
Peer reviewed article  

Available in  Authors 

Keywords
    Fucus vesiculosus Linnaeus, 1753 [WoRMS]
    Marine/Coastal
Author keywords
    Fucus vesiculosus; fucoidans; green extraction; rotavirus; antirota viral activity; antibacterial assay

Authors  Top 
  • Graikini, D.
  • Soro, A.B., more
  • Sivagnanam, S.P.
  • Tiwari, B.K.
  • Sanchez, L.

Abstract

    Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL−1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL−1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors