An adaptive finite element water column model using the Mellor-Yamada level 2.5 turbulence closure scheme
Hanert, E.; Deleersnijder, E.; Legat, V. (2006). An adaptive finite element water column model using the Mellor-Yamada level 2.5 turbulence closure scheme. Ocean Modelling 12(1-2): 205-223. dx.doi.org/10.1016/j.ocemod.2005.05.003
In: Ocean Modelling. Elsevier: Oxford. ISSN 1463-5003; e-ISSN 1463-5011, more
A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an ‘‘a posteriori’’ error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy