IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: Sensitivity comparison and preliminary risk assessment
Roman, YE.; De Schamphelaere, K.A.C.; Nguyen, L.T.H.; Janssen, C.R. (2007). Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: Sensitivity comparison and preliminary risk assessment. Sci. Total Environ. 387(1-3): 128-140. https://dx.doi.org/10.1016/j.scitotenv.2007.06.023
In: Science of the Total Environment. Elsevier: Amsterdam. ISSN 0048-9697; e-ISSN 1879-1026, more
Peer reviewed article  

Available in  Authors 

Keyword
    Fresh water

Authors  Top 
  • Roman, YE.
  • De Schamphelaere, K.A.C., more
  • Nguyen, L.T.H.
  • Janssen, C.R., more

Abstract
    Five benthic organisms commonly used for sediment toxicity testing were chronically (28 to 35 days) exposed to copper in standard laboratory-formulated sediment (following Organization for Economic Cooperation and Development guidelines) and lethal and sub-lethal toxicities were evaluated. Sub-lethal endpoints considered were reproduction and biomass production for Lumbriculus variegatus, growth and reproduction for Tubifex tubifex, growth and emergence for Chironomus riparius, and growth for Gammarus pulex and Hyalella azteca. Expressed on whole-sediment basis the observed lethal sensitivity ranking (from most to least sensitive) was: G. pulex>L. variegatus>H. azteca=C. riparius=T. tubifex, with median chronic lethal concentrations (LC50) between 151 and 327 mg/kg dry wt. The sub-lethal sensitivity ranking (from most to least sensitive, with the most sensitive endpoint between parentheses): C. riparius (emergence)>T. tubifex (reproduction)=L. variegatus (reproduction)>G. pulex (growth)>H. azteca (growth), with median effective concentrations (EC50) between 59.2 and 194 mg/kg dry wt. No observed effect concentrations (NOEC) or 10% effective concentrations (EC10) for the five benthic invertebrates were used to perform a preliminary risk assessment for copper in freshwater sediment by means of (a) the "assessment factor approach" or (b) the statistical extrapolation approach (species sensitivity distribution). Depending on the data (NOEC or EC10) and the methodology used, we calculated a Predicted No Effect Concentration (PNEC) for sediment between 3.3 and 47.1 mg Cu/dry wt. This range is similar to the range of natural (geochemical) background concentrations of copper in sediments in Europe, i.e. 90% of sediments have a concentration between 5 and 49 mg Cu/kg dry wt. A detailed analysis of the outcome of this preliminary exercise highlighted that multiple issues need to be explored for achieving a scientifically more sound risk assessment and for the development of robust sediment quality criteria for copper, including (i) the use of the assessment factor approach vs. the statistical extrapolation approach, (ii) the importance of bioavailability modifying factors (e.g., organic carbon, acid volatile sulfide), and (iii) the influence of prevailing geochemical (bioavailable) background concentrations on the copper sensitivity of local benthic biota.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors