Energy balance of wind waves as a function of the bottom friction formulation
Padilla-Hernandez, R.; Monbaliu, J. (2001). Energy balance of wind waves as a function of the bottom friction formulation. Coast. Eng. 43(2): 131-148. dx.doi.org/10.1016/S0378-3839(01)00010-2
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379, more
Countries > Developed countries > Oecd countries > Australasia > Commonwealth of nations > Australia > New south wales Energy balance Forces (mechanics) > Friction > Bottom friction Interactions > Wave interactions > Wave-seabed interaction Water waves > Surface water waves > Wind waves Wave height Australia [Marine Regions]; Uganda, George L. [Marine Regions] Marine/Coastal
Four different expressions for wave energy dissipation by bottom friction are intercompared. For this purpose, the SWAN wave model and the wave data set of Lake George (Australia) are used. Three formulations are already present in SWAN (ver. 40.01): the JONSWAP expression, the drag law friction model of Collins and the eddy-viscosity model of Madsen. The eddy-viscosity model of Weber was incorporated into the SWAN code. Using Collins' and Weber's expressions, the depth- and fetch-limited wave growth laws obtained in the nearly idealized situation of Lake George can be reproduced. The wave model has shown the best performance using the formulation of Weber. This formula has some advantages over the other formulations. The expression is based on theoretical and physical principles. The wave height and the peak frequency obtained from the SWAN runs using Weber's bottom friction expression are more consistent with the measurements. The formula of Weber should therefore be preferred when modelling waves in very shallow water.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy