IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects
Voisin, M.; Engel, C.R.; Viard, F. (2005). Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc. Natl. Acad. Sci. U.S.A. 102(15): 5432-5437. dx.doi.org/10.1073/pnas.0501754102
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, more
Peer reviewed article  

Available in  Authors 

Keywords
    Undaria pinnatifida (Harvey) Suringar, 1873 [WoRMS]
    Marine/Coastal
Author keywords
    coastal habitats; gene genealogy; introduced species; kelp; mitochondrial DNA

Authors  Top 
  • Voisin, M.
  • Engel, C.R.
  • Viard, F., more

Abstract
    Worldwide marine invaders, such as the brown alga Undaria pinnatifida, offer challenging models for unraveling the apparent paradox of sustainable settlement of exotic species over a large spectrum of environments. Two intergenic noncoding mitochondrial loci were found to be highly informative at the within-species level. Twenty-five haplotypes were found over the whole dataset (333 base pairs, 524 individuals, and 24 populations). The native range showed striking population genetic structure stemming from low diversity within and high differentiation among populations, a pattern not observed in the introduced range of this seaweed. Contrary to classical expectations of founding effects associated with accidental introduction of exotic species, most of the introduced populations showed high genetic diversity. At the regional scale, genetic diversity and sequence divergence showed contrasting patterns in the two main areas of introduction (Europe and Australasia), suggesting different processes of introduction in the two regions. Gene genealogy analyses point to aquaculture as a major vector of introduction and spread in Europe but implicate maritime traffic in promoting recurrent migration events from the native range to Australasia. The multiplicity of processes and genetic signatures associated with the successful invasion confirms that multiple facets of global change, e.g., aquaculture practices, alteration of habitats, and increased traffic, act in synergy at the worldwide level, facilitating successful pandemic introductions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors