IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Genotype-by-temperature interactions may help to maintain clonal diversity in Asterionella formosa (Bacillariophyceae)
Gsell, A.S.; Domis, L.N.D.; Przytulska-Bartosiewicz, A.; Mooij, W.M.; Van Donk, E.; Ibelings, B.W. (2012). Genotype-by-temperature interactions may help to maintain clonal diversity in Asterionella formosa (Bacillariophyceae). J. Phycol. 48(5): 1197–1208. dx.doi.org/10.1111/j.1529-8817.2012.01205.x
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817, more
Peer reviewed article  

Keyword
    Fresh water
Author keywords
    coexistence; environmental variability; fluctuating selection; similarity; thermal reaction norms

Authors  Top | Datasets 
  • Gsell, A.S., more
  • Domis, L.N.D., more
  • Przytulska-Bartosiewicz, A.
  • Mooij, W.M., more
  • Van Donk, E.
  • Ibelings, B.W., more

Abstract
    Marine and freshwater phytoplankton populations often show large clonal diversity, which is in disagreement with clonal selection of the most vigorous genotype(s). Temporal fluctuation in selection pressures in variable environments is a leading explanation for maintenance of such genetic diversity. To test the influence of temperature as a selection force in continually (seasonally) changing aquatic systems we carried out reaction norms experiments on co-occurring clonal genotypes of a ubiquitous diatom species, Asterionella formosa Hassall, across an environmentally relevant range of temperatures. We report within population genetic diversity and extensive diversity in genotype-specific reaction norms in growth rates and cell size traits. Our results showed genotype by environment interactions, indicating that no genotype could outgrow all others across all temperature environments. Subsequently, we constructed a model to simulate the relative proportion of each genotype in a hypothetical population based on genotype and temperature-specific population growth rates. This model was run with different seasonal temperature patterns. Our modeling exercise showed a succession of two to several genotypes becoming numerically dominant depending on the underlying temperature pattern. The results suggest that (temperature) context dependent fitness may contribute to the maintenance of genetic diversity in isolated populations of clonally reproducing microorganisms in temporally variable environments.

Datasets (2)
  • AFLP-analysis of Asterionella formosa in Dutch and Swiss lakes, more
  • Genotype by temperature interaction in Asterionella formosa dataset, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Datasets