IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins
Laruelle, G.G.; Durr, H.H.; Lauerwald, R.; Hartmann, J.; Slomp, C.P.; Goossens, N.; Regnier, P.A.G. (2013). Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17(5): 2029-2051. dx.doi.org/10.5194/hess-17-2029-2013
In: Hydrology and Earth System Sciences. European Geosciences Union: Göttingen. ISSN 1027-5606; e-ISSN 1607-7938, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Laruelle, G.G., more
  • Durr, H.H.
  • Lauerwald, R., more
  • Hartmann, J.
  • Slomp, C.P.
  • Goossens, N., more
  • Regnier, P.A.G., more

Abstract
    Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors