IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress
Dittami, S.M.; Scornet, D.; Petit, J.-L.; Segurens, B.; Da Silva, C.; Corre, E.; Dondrup, M.; Glatting, K.-H.; König, R.; Sterck, L.; Rouzé, P.; Van de Peer, Y.; Cock, J.M.; Boyen, C.; Tonon, T. (2009). Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol. 10(6): R66. http://dx.doi.org/10.1186/gb-2009-10-6-r66
In: Genome Biology. BMC: London. ISSN 1465-6906; e-ISSN 1474-760X, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Dittami, S.M.
  • Scornet, D.
  • Petit, J.-L.
  • Segurens, B.
  • Da Silva, C.
  • Corre, E.
  • Dondrup, M.
  • Glatting, K.-H.
  • König, R.
  • Sterck, L., more
  • Rouzé, P., more
  • Van de Peer, Y., more
  • Cock, J.M.
  • Boyen, C., more
  • Tonon, T.

Abstract
    Background: Brown algae (Phaeophyceae) are phylogenetically distant from red and green algae and an important component of the coastal ecosystem. They have developed unique mechanisms that allow them to inhabit the intertidal zone, an environment with high levels of abiotic stress. Ectocarpus siliculosus is being established as a genetic and genomic model for the brown algal lineage, but little is known about its response to abiotic stress.Results: Here we examine the transcriptomic changes that occur during the short-term acclimation of E. siliculosus to three different abiotic stress conditions (hyposaline, hypersaline and oxidative stress). Our results show that almost 70% of the expressed genes are regulated in response to at least one of these stressors. Although there are several common elements with terrestrial plants, such as repression of growth-related genes, switching from primary production to protein and nutrient recycling processes, and induction of genes involved in vesicular trafficking, many of the stress-regulated genes are either not known to respond to stress in other organisms or are have been found exclusively in E. siliculosus.Conclusions: This first large-scale transcriptomic study of a brown alga demonstrates that, unlike terrestrial plants, E. siliculosus undergoes extensive reprogramming of its transcriptome during the acclimation to mild abiotic stress. We identify several new genes and pathways with a putative function in the stress response and thus pave the way for more detailed investigations of the mechanisms underlying the stress tolerance ofbrown algae.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors