Parasitism as a determinant of community structure on intertidal flats
Mouritsen, K.N.; Poulin, R. (2010). Parasitism as a determinant of community structure on intertidal flats. Mar. Biol. (Berl.) 157(1): 201-213. http://dx.doi.org/10.1007/s00227-009-1310-2
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
The burrowing and movement ability of the New Zealand cockle Austrovenus stutchburyi is reduced when infected by echinostome trematodes. Previous experimental evidence from a single site suggests that this parasite-induced behavioural change of a key bivalve can affect the structure of the surrounding benthic community. By using multiple regression analyses on data collected from 17 intertidal flats, we here show that cockle parasitism is associated with macrozoobenthic community structure on a larger spatial scale. Regressions were performed for animal abundance, biomass, species diversity and species richness separately, entering cockle parasitism (infection intensity), presence/absence of ghost shrimps (Callianassa filholi), cockle density, primary producer abundance and organic content, particle size, sorting coefficient and gravel content of the substrate as predictors. Next to ghost shrimps, cockle parasitism was the best predictor of animal abundance by affecting (mainly positively) 8 of the 49 most widespread species significantly. Cockle parasitism was also associated with the biomass of anthozoans (positively), nemerteans (negatively) and bivalves (positively), whereas overall animal biomass was positively related to the sorting coefficient of the substrate. Species diversity was positively associated with cockle parasitism and gravel content of the substrate. Species richness was significantly associated with cockle parasitism (positively), ghost shrimps (negatively) and abundance of primary producers (positively) in combination. The impact of cockle parasitism on benthic community structure is believed governed directly or indirectly by (1) reduced sediment disturbance, (2) increased surface structural complexity and (3) availability of larval trematodes as an additional food source.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy