IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Review of some aspects of marine fish larviculture
Sorgeloos, P.; Dehasque, M.; Dhert, Ph.; Lavens, P. (1995). Review of some aspects of marine fish larviculture. ICES Mar. Sci. Symp. 201: 138-142
In: ICES Marine Science Symposia. ICES/Reitzel: Copenhagen. ISSN 0906-060X, more

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 

Abstract
    Dependable availability of quality fry to stock grow-out production systems has been one of the most critical factors in the commercial success of industrial production of fish and shellfish. Large-scale production of marine fish fry was realized only from the 1980s onwards. Although Japan was the pioneer with the red sea bream (Pagrus major), the most competitive hatchery methods were eventually developed in Europe for the sea bass (Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata). Improved knowledge of larval dietary requirements, not the least with regard to (n-3) highly unsaturated fatty acids (HUFAs), combined with the adoption of live-food enrichment protocols allowed the successful transition from pilot to commercial-scale larviculture. Initially based on an empirical approach, larviculture nutrition research today is of a multidisciplinary nature. There are good indications that the more fundamental approach will lead to significant progress in hatchery outputs. The larval dietary regimes will eventually be adjusted as a function of the cultured species and/or specific development stages, e.g., changes in the enrichment protocols for Brachionus and Artemia , the selected formulation of substitution diets, and/or the adoption of co-feeding techniques. The area that has been most neglected so far, but might provoke the biggest impact in future hatchery technology is microbiology. Also the prophylactic and therapeutic use of antibiotics and other chemotherapeutics is expected to undergo significant improvements in the near future. In addition, it is very likely that better broodstock conditioning and feeding can ensure improved and constant larval qualities. Finally, improved zoo techniques will make fish larviculture more predictable and more cost-effective, e.g., adoption of modular hatchery systems, selection and use of new materials, reduction of the so-called "human factors" by increased automation, etc.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors