IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Effects of feeding different linseed sources on omasal fatty acid flows and fatty acid profiles of plasma and milk fat in lactating dairy cows
Sterk, A.; Vlaeminck, B.; van Vuuren, A.M.; Hendriks, W.H.; Dijkstra, J. (2012). Effects of feeding different linseed sources on omasal fatty acid flows and fatty acid profiles of plasma and milk fat in lactating dairy cows. J. Dairy Sci. 95(6): 3149-3165. https://dx.doi.org/10.3168/jds.2011-4474
In: Journal of Dairy Science. American Dairy Science Association/Elsevier: Champaign. ISSN 0022-0302; e-ISSN 1525-3198, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    biohydrogenation, linseed, docosahexaenoic acid, fatty acid

Authors  Top 
  • Sterk, A.
  • Vlaeminck, B., more
  • van Vuuren, A.M.
  • Hendriks, W.H.
  • Dijkstra, J.

Abstract
    The aim of this experiment was to study the effects of feeding different linseed sources on omasal fatty acid (FA) flows, and plasma and milk FA profiles in dairy cows. Four ruminally cannulated lactating Holstein-Friesian cows were assigned to 4 dietary treatments in a 4 × 4 Latin square design. Dietary treatments consisted of supplementing crushed linseed (CL), extruded whole linseed (EL), formaldehyde-treated linseed oil (FL) and linseed oil in combination with marine algae rich in docosahexaenoic acid (DL). Each period in the Latin square design lasted 21 d, with the first 16 d for adaptation. Omasal flow was estimated by the omasal sampling technique using Cr-EDTA, Yb-acetate, and acid detergent lignin as digesta flow markers. The average DM intake was 20.6 ± 2.5 kg/d, C18:3n-3 intake was 341 ± 51 g/d, and milk yield was 32.0 ± 4.6 kg/d. Milk fat yield was lower for the DL treatment (0.96 kg/d) compared with the other linseed treatments (CL, 1.36 kg/d; EL, 1.49 kg/d; FL, 1.54 kg/d). Omasal flow of C18:3n-3 was higher and C18:3n-3 biohydrogenation was lower for the EL treatment (33.8 g/d; 90.9%) compared with the CL (21.8 g/d; 94.0%), FL (15.5 g/d; 95.4%), and DL (4.6 g/d; 98.5%) treatments, whereas whole-tract digestibility of crude fat was lower for the EL treatment (64.8%) compared with the CL (71.3%), FL (78.5%), and DL (80.4%) treatments. The proportion of C18:3n-3 (g/100 g of FA) was higher for the FL treatment compared with the other treatments in plasma triacylglycerols (FL, 3.60; CL, 1.22; EL, 1.35; DL, 1.12) and milk fat (FL, 3.19; CL, 0.87; EL, 0.83; DL, 0.46). Omasal flow and proportion of C18:0 in plasma and milk fat were lower, whereas omasal flow and proportions of biohydrogenation intermediates in plasma and milk fat were higher for the DL treatment compared with the other linseed treatments. The results demonstrate that feeding EL did not result in a higher C18:3n-3 proportion in plasma and milk fat despite the higher omasal C18:3n-3 flow. This was related to the decreased total-tract digestibility of crude fat. Feeding FL resulted in a higher C18:3n-3 proportion in plasma and milk fat, although the omasal C18:3n-3 flow was similar or lower than for the CL and EL treatment, respectively. Feeding DL inhibited biohydrogenation of trans-11,cis-15-C18:2 to C18:0, as indicated by the increased omasal flows and proportions of biohydrogenation intermediates in plasma and milk fat.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors