IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

How light and biomass density influence the reproduction of delayed Saccharina latissima gametophytes (Phaeophyceae)
Ebbing, A.; Pierik, R.; Bouma, T.J.; Kromkamp, J.C.; Timmermans, K. (2020). How light and biomass density influence the reproduction of delayed Saccharina latissima gametophytes (Phaeophyceae). J. Phycol. 56(3): 709-718. https://dx.doi.org/10.1111/jpy.12976
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817, more
Peer reviewed article  

Available in  Authors 

Keywords
    Saccharina latissima (Linnaeus) C.E.Lane, C.Mayes, Druehl & G.W.Saunders, 2006 [WoRMS]
    Marine/Coastal
Author keywords
    Gametophyte; Initial Gametophyte Density; Interaction; Kelp; Lifecycle control; Light intensity; Light quality; Photosynthetically Usable Radiation; Reproduction; Saccharina latissima; Vegetative growth

Authors  Top 
  • Ebbing, A., more
  • Pierik, R.
  • Bouma, T.J., more
  • Kromkamp, J.C.
  • Timmermans, K., more

Abstract
    Kelp life‐cycle transitions are complex and susceptible to various (a)biotic controls. Understanding the microscopic part of the kelp's lifecycle is of key importance, as gametophytes form a critical phase influencing, among others, the distributional limits of the species. Many environmental controls have been identified that affect kelp gametogenesis, whose interactive effects can be subtle and counterintuitive. Here we performed a fully factorial experiment on the (interactive) influences of light intensity, light quality, and the Initial Gametophyte Density (IGD) on Saccharina latissimi reproduction and vegetative growth of delayed gametophytes. A total of 144 cultures were followed over a period of 21 d. The IGD was a key determinant for reproductive success, with increased IGDs (≥0.04 mg DW · mL−1) practically halting reproduction. Interestingly, the effects of IGDs were not affected by nutrient availability, suggesting a resource‐independent effect of density on reproduction. The Photosynthetically Usable Radiation (PUR), overarching the quantitative contribution of both light intensity and light quality, correlated with both reproduction and vegetative growth. The PUR furthermore specifies that the contribution of light quality, as a lifecycle control, is a matter of absorbed photon flux instead of color signaling. We hypothesize that (i) the number of photons absorbed, independent of their specific wavelength, and (ii) IGD interactions, independent of nutrient availability, are major determinants of reproduction in S. latissimi gametophytes. These insights help understand kelp gametophyte development and dispersal under natural conditions, while also aiding the control of in vitro gametophyte cultures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors