IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Drivers of interannual sea‐level variability on the Northwestern European Shelf
Hermans, T.H.J.; Le Bars; Katsman, C.A.; Camargo; Gerkema, T.; Calafat, F.M.; Tinker, J.; Slangen, A.B.A. (2020). Drivers of interannual sea‐level variability on the Northwestern European Shelf. JGR: Oceans 125(10): e2020JC016325. https://dx.doi.org/10.1029/2020jc016325

Additional data:
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Interannual sea-level variability; Northwestern European Shelf; satellite altimetry era; regional ocean model; ROMS; sensitivity experiments

Authors  Top 
  • Hermans, T.H.J., more
  • Le Bars
  • Katsman, C.A.
  • Camargo
  • Gerkema, T., more
  • Calafat, F.M.
  • Tinker, J.
  • Slangen, A.B.A., more

Abstract
    Sea level on the Northwestern European Shelf (NWES) varies substantially from year to year. Removing explained parts of interannual sea‐level variability from observations helps to improve estimates of long‐term sea‐level trends. To this end, the contributions of different drivers to interannual sea‐level variability need to be understood and quantified. We quantified these contributions for the entire NWES by performing sensitivity experiments with a high‐resolution configuration of the Regional Ocean Modeling System (ROMS). The lateral and atmospheric boundary conditions were derived from reanalyses. We compared our model results with satellite altimetry data, and used our sensitivity experiments to show that non‐linear feedbacks cause only minor interannual sea‐level variability on the shelf. This indicates that our experiments can be used to separate the effects of different drivers. We find that wind dominates the variability of annual mean sea level in the southern and eastern North Sea (up to 4.7 cm standard deviation), whereas the inverse barometer effect dominates elsewhere on the NWES (up to 1.7 cm standard deviation). In contrast, forcing at the lateral ocean boundaries results in small and coherent variability on the shelf (0.5 cm standard deviation). Variability driven by buoyancy fluxes ranges from 0.5 to 1.3 cm standard deviation. The results of our sensitivity experiments explain the (anti)correlation between interannual sea‐level variability at different locations on the NWES and can be used to estimate sea‐level rise from observations in this region with higher accuracy.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors