IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Deep-sea turbulence evolution observed by multiple closely spaced instruments
Yang, C.-F.; Chi, W.-C.; van Haren, H. (2021). Deep-sea turbulence evolution observed by multiple closely spaced instruments. NPG Scientific Reports 11(1): 3919. https://doi.org/10.1038/s41598-021-83419-2
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Yang, C.-F.
  • Chi, W.-C.
  • van Haren, H., more

Abstract

    Turbulent mixing in the deep ocean is not well understood. The breaking of internal waves on sloped seafloor topography can generate deep-sea turbulence. However, it is difficult to measure turbulence comprehensively due to its multi-scale processes, in addition to flow–flow and flow–topography interactions. Dense, high-resolution spatiotemporal coverage of observations may help shed light on turbulence evolution. Here, we present turbulence observations from four broadband ocean bottom seismometers (OBSs) and a 200-m vertical thermistor string (T-string) in a footprint of 1 × 1 km to characterize turbulence induced by internal waves at a depth of 3000 m on a Pacific continental slope. Correlating the OBS-calculated time derivative of kinetic energy and the T-string-calculated turbulent kinetic energy dissipation rate, we propose that the OBS-detected signals were induced by near-seafloor turbulence. Strong disturbances were detected during a typhoon period, suggesting large-scale inertial waves breaking with upslope transport speeds of 0.2–0.5 m s−1. Disturbances were mostly excited on the downslope side of the array where the internal waves from the Pacific Ocean broke initially and the turbulence oscillated between < 1 km small-scale ridges. Such small-scale topography caused varying turbulence-induced signals due to localized waves breaking. Arrayed OBSs can provide complementary observations to characterize deep-sea turbulence.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors