IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Evaluating a regional climate model simulation of Greenland ice sheet snow and firn density for improved surface mass balance estimates
Alexander, P.M.; Tedesco, M.; Koenig, L.; Fettweis, X. (2019). Evaluating a regional climate model simulation of Greenland ice sheet snow and firn density for improved surface mass balance estimates. Geophys. Res. Lett. 46(21): 12073-12082. https://hdl.handle.net/10.1029/2019GL084101
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Greenland ice sheet; snow and firn density; regional climate models; surface mass balance

Authors  Top 
  • Alexander, P.M.
  • Tedesco, M.
  • Koenig, L.
  • Fettweis, X., more

Abstract
    Modeling vertical profiles of snow and firn density near the surface of the Greenland ice sheet (GrIS) is key to estimating GrIS mass balance, and by extension, global sea level change. To understand sources of error in simulated GrIS density, we compare GrIS density profiles from a leading regional climate model with coincident in situ measurements. We identify key contributors to model density and mass balance biases, including underestimated simulated fresh snow density (which leads to underestimation of density in the top 1 m of snow by ~10%). In areas undergoing frequent melting, positive density biases (of 7% in the top 1 m, and 10% between 1 and 10 m) are likely associated with errors in representing meltwater production, retention, and refreezing. The results highlight the importance of accurately capturing fresh snow density and meltwater processes in models used to estimate GrIS mass balance change.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors