IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)
Akperov, M.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Parfenova, M.R.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dembitskaya, M.A.; Dethloff, K.; Fettweis, X.; Gutjahr, O.; Heinemann, G.; Koenigk, T.; Koldunov, N.V.; Laprise, R.; Mottram, R.; Nikiéma, O.; Sein, D.V.; Sobolowski, S.; Winger, K.; Zhang, W. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global Planet. Change 182: 103005. https://hdl.handle.net/10.1016/j.gloplacha.2019.103005
In: Global and Planetary Change. Elsevier: Amsterdam; New York; Oxford; Tokyo. ISSN 0921-8181; e-ISSN 1872-6364, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Arctic; Cyclone activity; Climate change; Regional climate models; CMIP5 models; CORDEX

Authors  Top 
  • Akperov, M.
  • Rinke, A.
  • Mokhov, I.I.
  • Semenov, V.A.
  • Parfenova, M.R.
  • Matthes, H.
  • Adakudlu, M.
  • Boberg, F.
  • Christensen, J.H.
  • Dembitskaya, M.A.
  • Dethloff, K.
  • Fettweis, X., more
  • Gutjahr, O.
  • Heinemann, G.
  • Koenigk, T.
  • Koldunov, N.V.
  • Laprise, R.
  • Mottram, R.
  • Nikiéma, O.
  • Sein, D.V.
  • Sobolowski, S.
  • Winger, K.
  • Zhang, W.

Abstract
    Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors