IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

The external phenotype-skeleton link in post-hatch farmed Chinook salmon (Oncorhynchus tshawytscha)
De Clercq, A.; Perrott, M.R.; Davies, P.S.; Preece, M.A.; Huysseune, A.; Witten, P.E. (2018). The external phenotype-skeleton link in post-hatch farmed Chinook salmon (Oncorhynchus tshawytscha). J. Fish Dis. 41(3): 511-527. https://dx.doi.org/10.1111/jfd.12753
In: Journal of Fish Diseases. Blackwell Science: Oxford; London; Edinburgh; Boston; Melbourne. ISSN 0140-7775; e-ISSN 1365-2761, more
Peer reviewed article  

Available in  Authors 

Keyword
    Oncorhynchus tshawytscha (Walbaum, 1792) [WoRMS]

Authors  Top 
  • De Clercq, A., more
  • Perrott, M.R.
  • Davies, P.S.
  • Preece, M.A.
  • Huysseune, A., more
  • Witten, P.E., more

Abstract
    Skeletal deformities in farmed fish are a recurrent problem. External malformations are easily recognized, but there is little information on how external malformations relate to malformations of the axial skeleton: the external phenotype–skeleton link. Here, this link is studied in post-hatch to first-feed life stages of Chinook salmon (Oncorhynchus tshawytscha) raised at 4, 8 and 12°C. Specimens were whole-mount-stained for cartilage and bone, and analysed by histology. In all temperature groups, externally normal specimens can have internal malformations, predominantly fused vertebral centra. Conversely, externally malformed fish usually display internal malformations. Externally curled animals typically have malformed haemal and neural arches. External malformations affecting a single region (tail malformation and bent neck) relate to malformed notochords and early fusion of fused vertebral centra. The frequencies of internal malformations in both externally normal and malformed specimens show a U-shaped response, with lowest frequency in 8°C specimens. The fused vertebral centra that occur in externally normal specimens represent a malformation that can be contained and could be carried through into harvest size animals. This study highlights the relationship between external phenotype and axial skeleton and may help to set the framework for the early identification of skeletal malformations on fish farms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors