one publication added to basket [251313] | Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis
Arzul, I.; Gagnaire, B.; Bond, C.; Chollet, B.; Morga, B.; Ferrand, S.; Robert, M.; Renault, T. (2009). Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Dis. Aquat. Org. 85(1): 67-75. http://dx.doi.org/10.3354/dao02047
In: Diseases of Aquatic Organisms. Inter Research: Oldendorf/Luhe. ISSN 0177-5103; e-ISSN 1616-1580, meer
| |
Trefwoorden |
Flow cytometry Properties > Biological properties > Tolerance > Salinity tolerance Properties > Biological properties > Tolerance > Temperature tolerance Bonamia ostreae Pichot, Comps, Tigé, Grizel & Rabouin, 1980 [WoRMS] Marien/Kust |
Author keywords |
In vitro assays; Cell viability |
Auteurs | | Top | Dataset |
- Arzul, I.
- Gagnaire, B.
- Bond, C.
- Chollet, B.
|
- Morga, B.
- Ferrand, S.
- Robert, M.
- Renault, T.
|
|
Abstract |
Bonamiosis due to the intrahaemocytic protistan parasite Bonamia ostreae is a European endemic disease affecting the flat oyster Ostrea edulis. The parasite has been described in various ecosystems from estuaries to open sea, but no clear correlation has yet been demonstrated between disease development and environmental parameters. In this study, the effect of temperature and salinity on the survival of purified parasites maintained in vitro in seawater was investigated by flow cytometry. Purified parasites were incubated in various seawater media (artificial seawater, natural seawater, seabed borewater) at various temperatures (4, 15 and 25°C) and subjected to a range of salinities from 5 to 45 g l–1. Parasites were collected after 12, 24 and 48 h of incubation for flow cytometry analyses including estimation of parasite mortality and parasite viability through detection of non-specific esterase activities. Artificial seawater appeared unsuitable for parasite survival, and results for all media showed a significantly lower survival at 25°C compared to 4°C and 15°C. Moreover, high salinities (≥35 g l–1) favoured parasite survival and detection of esterase activities. Flow cytometry appears to be a suitable technique to investigate survival and activities of unicellular parasites like B. ostreae under varied conditions. Although these results contribute to a better understanding of existing interactions between the parasite B. ostreae and its environment, validation through epidemiological surveys in the field is also needed. |
Dataset |
- REPHY: REPHY (2022). Dataset of French Observation and Monitoring program for Phytoplankton and Hydrology in coastal waters since 1987. SEANOE. https://doi.org/10.17882/47248, meer
|
|