IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [329874]
Drivers of interannual sea‐level variability on the Northwestern European Shelf
Hermans, T.H.J.; Le Bars; Katsman, C.A.; Camargo; Gerkema, T.; Calafat, F.M.; Tinker, J.; Slangen, A.B.A. (2020). Drivers of interannual sea‐level variability on the Northwestern European Shelf. JGR: Oceans 125(10): e2020JC016325. https://dx.doi.org/10.1029/2020jc016325

Bijhorende data:
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Interannual sea-level variability; Northwestern European Shelf; satellite altimetry era; regional ocean model; ROMS; sensitivity experiments

Auteurs  Top 
  • Hermans, T.H.J., meer
  • Le Bars
  • Katsman, C.A.
  • Camargo
  • Gerkema, T., meer
  • Calafat, F.M.
  • Tinker, J.
  • Slangen, A.B.A., meer

Abstract
    Sea level on the Northwestern European Shelf (NWES) varies substantially from year to year. Removing explained parts of interannual sea‐level variability from observations helps to improve estimates of long‐term sea‐level trends. To this end, the contributions of different drivers to interannual sea‐level variability need to be understood and quantified. We quantified these contributions for the entire NWES by performing sensitivity experiments with a high‐resolution configuration of the Regional Ocean Modeling System (ROMS). The lateral and atmospheric boundary conditions were derived from reanalyses. We compared our model results with satellite altimetry data, and used our sensitivity experiments to show that non‐linear feedbacks cause only minor interannual sea‐level variability on the shelf. This indicates that our experiments can be used to separate the effects of different drivers. We find that wind dominates the variability of annual mean sea level in the southern and eastern North Sea (up to 4.7 cm standard deviation), whereas the inverse barometer effect dominates elsewhere on the NWES (up to 1.7 cm standard deviation). In contrast, forcing at the lateral ocean boundaries results in small and coherent variability on the shelf (0.5 cm standard deviation). Variability driven by buoyancy fluxes ranges from 0.5 to 1.3 cm standard deviation. The results of our sensitivity experiments explain the (anti)correlation between interannual sea‐level variability at different locations on the NWES and can be used to estimate sea‐level rise from observations in this region with higher accuracy.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs