The end-Triassic mass extinction (similar to 201.4 million years ago), marked by terrestrial ecosystem turnover and up to similar to 50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a similar to 8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least similar to 12 x 10(3) gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.
Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid