Thermal tolerance as a driver of reef fish community structure at the isolated tropical Mid-Atlantic Ridge Islands
Ferrari, D.S.; Nunes, L.T.; Jones, K.L.; Ferreira, C.E.L.; Floeter, S.R. (2024). Thermal tolerance as a driver of reef fish community structure at the isolated tropical Mid-Atlantic Ridge Islands. Mar. Environ. Res. 199: 106611. https://dx.doi.org/10.1016/j.marenvres.2024.106611
Towards the Sustainable Development of the Atlantic Ocean: Mapping and Assessing the present and future status of Atlantic marine ecosystems under the influence of climate change and exploitation, meer
Reef fish communities are shaped by historical and ecological factors, including abiotic and biotic mechanisms at different spatial scales, determining species composition, abundance and biomass. The oceanic islands in the Mid-Atlantic Ridge (St. Peter and St. Paul’s Archipelago - SPSPA, Ascension, and St. Helena) , exhibiting differences in community structure along a 14-degree latitudinal and a 10°C thermal gradient. We investigate the influence of sea surface temperature, area, age, isolation and phosphate on reef fish community structures. Reef fish trophic structure varies significantly across the islands, with planktivores and herbivore-detritivores showing the highest abundances in SPSPA and Ascension, while less abundant in St. Helena, aligning with the thermal gradient. V ariations in reef fish community structures were predominantly influenced by thermal regimes, corroborating the expansion of species' thermal niche breadth at higher latitudes and lower temperatures. This study highlights that in addition to biogeographic factors, temperature is pivotal on shaping oceanic island reef fish community structure.
Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid