IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement
de Jager, M.; Bartumeus, F.; Kölzsch, A.; Weissing, F.J.; Hengeveld, G.M.; Nolet, B.A.; Herman, P.M.J.; de Koppel, J. (2014). How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement. Proc. - Royal Soc., Biol. Sci. 281(1774): 20132605. http://dx.doi.org/10.1098/rspb.2013.2605
In: Proceedings of the Royal Society of London. Series B. The Royal Society: London. ISSN 0962-8452; e-ISSN 1471-2954, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Mytilus edulis Linnaeus, 1758 [WoRMS]
Author keywords
    Brownian motion; Levy walk; animal movement; Mytilus edulis; searchefficiency; resource density

Auteurs  Top 
  • de Jager, M., meer
  • Bartumeus, F.
  • Kölzsch, A., meer
  • Weissing, F.J.
  • Hengeveld, G.M.
  • Nolet, B.A.
  • Herman, P.M.J., meer
  • de Koppel, J., meer

Abstract
    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Levy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs